

MosWing: a Noise-Robust Mosquito Wingbeat Detection Model

Phuriwat Angkoondittaphong Napahatai Sittirit Danaidech Ardsamai

Wishow of the Land

How do you handle this puny mosquito?

Existing Methods for Gathering Mosquito Population Information

Manual counting

- Labor-intensive and expensive
- Requires expert for counting

Existing Methods for Gathering Mosquito Population Information

Manual counting

- Labor-intensive and expensive
- Requires expert for counting

Machine Learning Models

- Does not need the expert onsite
- Based on acoustic data or based on optical data⁵

Commonly used features in ML:

- Fundamental frequency [7]
- Feature extraction from frequency (e.g. MFCC) [8]
- Spectrograms [9]

5

Issues in Existing Mosquito Detection/Classification Models

Model performance significantly dropped under noisy environment [12]

Problem statement ^{1.}

- Separation of detector and classifier leads to the loss of temporal information in wingbeat sounds and over-computation in the classifier.
- When mosquito sound is interrupted by other noises, the current model's performance drops significantly.

Objective

To develop a machine learning model that can identify periods of mosquito presence and classify its species and sex from wingbeat sounds, along with being robust to noisy environments.

Multi-label classification model

Input

Output

and n_class is number of classes

n_seg = 10 segments, n_class = 6

Where d is duration in seconds of the sound wave and sr is sampling rate sr = 8khz, d = 10 seconds

Baseline - CRNN Sound Even Detection (SEDNet)

SEDNet [13] is a polyphonic sound event detection model

- Receives input as log mel-band energy (mel-band spectrogram)
- Log mel-band energy does not design to convey some fine, high-resolution features that can differentiate classes.

Diagram of SEDNet model architecture

Our Proposed Model (1DCRNN)

- A polyphonic sound event detection model that processes raw audio signal
- Inspired by SEDNet with major difference in dismissing spectrogram
- Uses recurrent layer to handle sequential time-series data

Advantages:

- Solve spectrogram issue of overlooking some discriminators
- Use less computational time

1DCRNN model architecture

Noise Simulation

Process of Overlaying mosquito sounds onto background noises:

- 1. Each chuck of generated sound consists of:
 - a. 10 seconds of background
 - b. 1-2 randomly overlayed mosquito sounds, each no more than 2 seconds
- 2. Apply a gain factor G to vary the volume (amplitude)

of the mosquito sounds

Data Preparation

Mosquito:

- 2 Sets of recordings retrieved from MIRU, Home-recorded and Studio-recorded.
- 5 species, each 2 sexes
- Recording Process:
 - put the mosquito in the small cylindrical container with a microphone
 - recorded for a few minutes then cut only the mosquito presence into small (0.5 2 seconds) cut files

Mosquito Species	Male(files)	Female(files)		
An. Dirus	178	152		
Cx. Quin	113	120		
Ae. Albopictus	218	128		
Ae. Aegypti	152	166		
An. Minimus	50	37		

Number of wingbeat cut files of home-recorded

Mosquito Species	Male(files)	Female(files)
An. Dirus	220	286
Cx. Quin	370	385
Ae. albopictus	271	280
Ae. Aegypti	300	303
An. Minimus	30	33

Number of wingbeat cut files of studio-recorded

Training: 40,000 seconds Validating/Testing: 20,000 seconds

- Environmental sound
 - **Type 1 MIRU**: 25%
 - Type 2 HumbugDB: 25%
 - **Type 3 Silence**: 50%
- Mosquito wingbeat sound
 - From MIRU 2 sets of recordings.

Dataset

The dataset only contain **the mosquito species that coexist** in the real geographical location

- Habitat A: Anopheles and Culex genus (6 classes)
- Habitat B: Aedes and Culex genus (6 classes)

Final Result: F1 per class

Model	Habitat A Results						
	An.Mini.M	An.Diru.M	Cx.Quin.M	An.Mini.F	An.Diru.F	Cx.Quin.F	
SEDNet (baseline)	0.000	0.591	0.458	0.070	0.520	0.772	
1DCRNN	0.000	0.423	0.465	0.353	0.566	0.671	

Model	Habitat B Results						
	Ae.Aeg.M	Ae.Albo.M	Cx.Quin.M	Ae.Aeg.F	Ae.Albo.F	Cx.Quin.F	
SEDNet (baseline)	0.181	0.360	0.453	0.572	0.514	0.756	
1DCRNN	0.391	0.449	0.532	0.591	0.759	0.773	

- Result is competitive in habitat A, 1DCRNN is better in habitat B
 - 1DCRNN are able to learn An.Minimus.F, while SEDNet can't

Final Result: F1 for detection

Model	Habitat A Results				Model	Habitat B Results		
	F1 P R		F1	Р	R			
SEDNet (baseline)	0.860	0.878	0.842		SEDNet (baseline)	0.876	0.847	0.908
1DCRNN	0.877	0.940	0.822		1DCRNN	0.936	0.967	0.906

1DCRNN is much better at detection than SEDNet SEDNet has higher recall, but is only slightly better

Thank you Q & A